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This appendix provides the formal proof of Proposition 1, an analytic calculation show-
ing that indivisible x-goods are not essential for our main results, and a numerical example
showing that our results can also be obtained in a random coefficients discrete choice demand
system like that of Berry, Levinsohn and Pakes (1995), commonly used in the industrial or-
ganization literature. The appendix also outlines how the model with GHH preferences is
solved numerically, does sensitivity analysis, and describes the data and calibration proce-
dures in more detail. Finally, the appendix sketches a version of the model with endogenous
risk sharing.

A Proof of Proposition 1

Since marginal cost is constant and normalized to 1, the optimal markup m(z, σ) is equal to
the optimal price and so satisfies the first-order condition:

m(z, σ)− 1 =
1

h
(
θm(z,σ)/ν−z

σ

) νσ
θ
, (1)

where h(ε) = f(ε)/(1 − F (ε)) > 0 is the hazard rate of the distribution of idiosyncratic
effective labor productivity. By Assumption 1 the hazard is increasing h′(ε) ≥ 0. Application
of the implicit function theorem then gives:

∂m(z, σ)

∂z
=

h′
(
θm(z,σ)/ν−z

σ

)
h
(
θm(z,σ)/ν−z

σ

)2

+ h′
(
θm(z,σ)/ν−z

σ

) ν
θ
≥ 0, (2)
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and similarly:

∂m(z, σ)

∂σ
=
h′
(
θm(z,σ)/ν−z

σ

)(
θm(z,σ)/ν−z

σ

)
+ h

(
θm(z,σ)/ν−z

σ

)
h
(
θm(z,σ)/ν−z

σ

)2

+ h′
(
θm(z,σ)/ν−z

σ

) ν

θ
> 0. (3)

Notice that since wi > 0 all i, the optimal markup is at least m(z, σ) > νz/θ so that both
the numerator and denominator in this last expression are strictly positive. �

B Indivisibility of x goods not essential

Markups can be counter-cyclical because an increase in the dispersion of income will en-
dogenously decrease the elasticity of demand, even without indivisible goods. To make this
point, consider a variant of the illustrative model in Section 1. Households i ∈ [0, 1] have
identical quasi-linear preferences Ui = log(ci) + xi over a competitive c-good and a monopo-
listically supplied x-good. The x-good is perfectly divisible in that a household can choose
any xi ≥ 0. Households choose ci and xi to maximize utility subject to the budget constraint
ci + pxi ≤ yi where p is the relative price of the x-good in units of the c-good and yi > 0
is the household’s total income. Total income yi > 0 is IID uniform in the population on
[z − σ, z + σ] where z > σ > 0.

A household’s optimal demand for the x-good is given by:

xi = max

(
0,
yi
p
− 1

)
. (4)

As in the illustrative model, only households that have a high income relative to the price
of the x-good will buy x-goods. The aggregate demand curve for the monopolist x-good
producer is then:

x(p) :=

∫ 1

0

xidi =

∫ z+σ

z−σ
max

(
0,
yi
p
− 1

)
1

2σ
dyi. (5)

Calculating the integral and simplifying gives:

x(p) =

∫ z+σ

p

(
yi
p
− 1

)
1

2σ
dyi =

[
(z + σ)2

2p
+

1

2
p− (z + σ)

]
1

2σ
. (6)

As in the benchmark model, the monopolist x-good producer has constant marginal costs
normalized to 1 and chooses price p to maximize profits,

π(p) := (p− 1)x(p), (7)

taking as given the demand curve (6).
To ensure that the x-good producer will operate:

Assumption 1. Marginal costs are sufficiently low, 1 ≤ z + σ.
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Let m(z, σ) denote the optimal markup chosen by the x-good producer. Since marginal
costs are constant and normalized to one, this is the same as the optimal price. Qualitatively,
the comparative static results with respect to z and σ are the same as in the main text:

Proposition 1. In the model with divisible x-good, the optimal markup m(z, σ) is increasing
in mean income z and increasing in income dispersion σ.

Hence the indivisibility of the x-good as used in the main text is not essential for the
markup to be increasing in dispersion.

Proof. First observe that, up to a positive scalar that is irrelevant for the optimal pricing
decision, the x-good producer’s profit function depends only on the sum z + σ and not on
z or σ separately. Given this, let k := z + σ. Now note the boundaries of the producer’s
problem: since profits are π(p) = (p−1)x(p), setting p = 1 ensures zero profit as does setting
the higher price p = k (since x(k) = 0 from equation 6). Now let’s turn to interior solutions.

The first order necessary condition characterizing the optimal price can be written:

π′(p) = (p− 1)x′(p) + x(p) = 0. (8)

Using the formula (6) for the demand curve gives:

π′(p) = p− k +
[
(k/p)2 − 1

]
/2 = 0. (9)

Similarly, the second order condition for a maximum is:

π′′(p) = 1− k2/p3 < 0. (10)

There are two solutions in the interval [1, k] to the first order condition, one interior and one
on a boundary. From the second order condition, marginal profit π′(p) is continuous and
strictly decreasing in p for all p ∈ (1, k2/3) and is then strictly increasing for all p ∈ (k2/3, k)
and asymptotes to π′(p) = 0 as p → k from below. Moreover, π′(1) > 0 > π′(k2/3). So
from the intermediate value theorem the first order condition has a unique interior solution
p ∈ (1, k2/3) and has a second, higher, solution at the boundary p = k. This higher solution
violates the second order condition and indeed, as noted above both this boundary solution
p = k and the other boundary solution p = 1 lead to zero profits. By contrast the interior
solution, call it p(k), leads to strictly positive profits — this is because π(1) = 0 and π′(p) > 0
for all p < p(k). Therefore the unique interior local maximum at p(k) is also the unique
global maximum.

Applying the implicit function theorem shows that this optimal price p(k) is increasing
in k if and only if the marginal profit function is increasing in k, that is:

p′(k) ≥ 0⇔ ∂

∂k
{p− k +

[
(k/p)2 − 1

]
/2} ≥ 0, (11)

when the partial derivative is evaluated at the optimum, p(k). Calculating the derivative
and simplifying:

p′(k) ≥ 0⇔ k1/2 ≥ p(k). (12)
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Now let’s check if this condition holds. Evaluating the marginal profit function π′(p) at
p = k1/2 gives:

π′(k1/2) = k1/2 − k/2− 1/2 =: A(k). (13)

Now since A(1) = 0 and A′(k) < 0 for all k > 1 it follows that π′(k1/2) ≤ 0 for all k ≥ 1
with equality if and only if k = 1. But this implies the optimal price is indeed p(k) ≤ k1/2

(since p(k) satisfies π′(p(k)) = 0 at a point where the second order condition holds). And so
(12) implies p′(k) ≥ 0 with equality if and only if k = 1. Since k := z + σ and the optimal
markup is equal to the optimal price, m(z, σ) = p(z + σ). Therefore the optimal markup is
increasing in mean income z and increasing in income dispersion σ.

The intuition for this result is the same as in the benchmark model. An increase in the
mean z shifts out and steepens the firm’s marginal revenue curve, leading to higher sales of
x and a higher markup. An increase in dispersion σ shifts in but also steepens the firm’s
marginal revenue curve so sales of x fall but the markup rises.

C Random coefficients discrete choice demand

This section outlines a version of our model with a discrete-choice random-coefficients de-
mand system like that of Berry et al. (1995), commonly used in the industrial organization
literature. This exercise also clarifies what model features are essential for more dispersion
to raise markups.

In our benchmark model, the island structure prevents competition between producers.
A consumer is randomly allocated to an island j and chooses to buy the good at the posted
price or not. Given the indirect utility function, a consumer then chooses xij = 1 for all j
such that θpj/ν ≤ wi. But in a BLP-type model, the choice among j differentiated goods is
mutually exclusive. Each consumer faces a menu of differentiated goods with prices pj and
can choose one and only one of the j goods to consume.

Using the notation of our benchmark static model, the Lagrangian for consumer i is:

L = log ci − θni + ν

∫ 1

0

xijdj + λi

(
wini + π − ci −

∫ 1

0

pjxijdj

)
. (14)

Collecting terms and noting that the first order conditions imply θ = λiwi the indirect utility
from consuming xij = 1 can be written as:

uij = ν − λipj = ν − θ

wi
pj. (15)

This now takes the form of a random coefficients, discrete choice, demand system.
To smooth out the problem facing firms, it’s convenient to introduce an additional source

of dispersion in valuations. In particular, suppose instead of a constant marginal utility ν
for all i and j there are random νij (i.e., taste shocks). Moreover suppose that νij can
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be decomposed into a product-specific component ν̄j common across all consumers and an
idiosyncratic component εij, that is:

νij = ν̄j + εij, (16)

so that indirect utility from consuming xij = 1 is:

uij = νij −
θ

wi
pj = ν̄j −

θ

wi
pj + εij. (17)

To obtain the familiar logit formulas for demand, assume that εij is IID extreme value
(McFadden 1973). Then demand for a producer is given by the mixed logit formula:

xj(p,p) =

∫ ∞
0

(
exp(ν̄j − θp/wi)

1 +
∫ 1

0
exp(ν̄k − θpk/wi)dk

)
f(wi|z, σ) dwi, (18)

See also Nevo (2000) or Train (2003) for further discussion and detailed derivations. Here
p := (pk) denotes the collection of prices charged by all firms and the demand curve is indexed
by j because of the product-specific ν̄j terms. For each firm, the profit maximization problem
can be written:

pj(p) ∈ arg max
p

[(p− 1)xj(p,p)] . (19)

and we then need to solve for a fixed-point in prices. To keep the number of free parameters
from proliferating, let ν̄j = ν for all j. With this assumption the j index can be dropped from
the demand curve, and, since firms are now identical, it’s natural to look for a symmetric
equilibrium where each firm charges the same price, pj = p for all j. This equilibrium price is
a function of the parameters z, σ of the distribution of idiosyncratic productivities f(wi|z, σ).

The model is solved under two scenarios. In the first, as in our benchmark model,
consumers can choose not to consume any of the x goods and instead simply consume more
of the numeraire c good. In this variable x-good demand scenario, the total demand for x
goods is not fixed. In our second scenario, there is fixed x-good demand, consumers necessarily
choose one of the x-goods and it is only a question of which one (recall that the choice over
x-goods is mutually exclusive).

Variable x-good demand. If, as in our benchmark model, consumers can take the ‘out-
side option’ of choosing no x good and instead simply consume more c good, the model
cannot be solved analytically. We solved this version of the model numerically with the
average utility weight on x-goods ν normalized to 1, the utility weight on leisure θ set to 3
so that labor supply is roughly 1/3rd, a lognormal productivity distribution with aggregate
productivity z = 0.7 and we varied the degree of productivity dispersion. These parameters
lead to markups for the x goods in the 20% – 40% range, as in Berry et al. (1995). As shown
in figure C.1, with these parameter values the markup is increasing in earnings dispersion.
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Fixed x-good demand. If, however, consumers do not have the outside option of simply
consuming more c good, then this result is overturned. In this case, the demand curve facing
a firm becomes:

xj(p,p) =

∫ ∞
0

(
exp(ν̄j − θp/wi)∫ 1

0
exp(ν̄k − θpk/wi)dk

)
f(wi|z, σ) dwi. (20)

Again consider the symmetric case where ν̄j = ν all j and compute equilibrium prices. It
is straightforward to show analytically that in this case any mean-preserving increase in
dispersion σ reduces the equilibrium price and markup (details available on request).

What this teaches us is that the cyclical variation in the amount of x-goods purchased is
an essential component of our results. When, as in this second scenario, all consumers are
required to buy one unit of x-goods, then an x-good firm that raises its price potentially loses
customers to another x-good firm. But when — as in the first scenario and our benchmark
model — consumers have the outside option, then a firm that raises its price loses customers
who choose to buy the c good instead. The elasticity of demand in these two situations
varies in opposite ways over the business cycle.

D Solving the model with GHH preferences

Households buy good xj if and only if ν ≥ λipj, where λi is the Lagrange multiplier on the
budget constraint and satisfies:

λi =

(
ci − θ

n1+γ
i

1 + γ

)−1

. (21)

In equilibrium each seller sets the same price p = pj for all j and each household buys
or not. Since x-goods are sold in discrete {0, 1} amounts, each household’s expenditure on
x-goods is either p or 0.

Now let p̂(wi) denote the highest price that a household with idiosyncratic productivity
wi will pay for the x-good. Using the cutoff rule for x-good purchases, this price p̂(wi)
satisfies ν = p̂(wi)λi. Substituting for λi from (21) gives:

ν = p̂(wi)

(
ci − θ

n1+γ
i

1 + γ

)−1

= p̂(wi)

(
win̂(wi) + π − p̂(wi)− θ

n̂(wi)
1+γ

1 + γ

)−1

,

where the second line uses the budget constraint (equation 2 from the main text) to eliminate
ci and where n̂(wi) is given by the labor supply curve (equation 13 from the main text).
Solving for p̂(wi) yields:

p̂(wi) =
ν

1 + ν

(
win̂(wi) + π − θ n̂(wi)

1+γ

1 + γ

)
. (22)
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This is a continuous, strictly increasing and strictly convex function of wi.
Now let ŵ(p) denote the inverse of the reservation price function p̂(w), i.e., ŵ(p̂) = 1, so

that ŵ(p) represents the lowest idiosyncratic productivity draw that will lead a household
to purchase at price p (so ŵ(p) is strictly increasing and strictly concave). Then the total
demand facing the x-firm on island j at price is:

x(pj) = Pr[w ≥ ŵ(pj)] = 1− Φ

(
1

σ
log

(
ŵ(pj)

z

))
, (23)

where Φ denotes the standard normal cumulative distribution function.
The resulting profit of firm j is revenue minus costs πj = pjx(pj)− x(pj)

1/α. Aggregate

profits are π =
∫ 1

0
πjdj. Since in equilibrium pj = p for all j, πj = π for all j too. In

equation (22), aggregate profits π enter the reservation price function p̂(w) and therefore
enter the inverse ŵ(p) too. To acknowledge this dependence, write ŵ(p, π). To compute an
equilibrium numerically, then, we have to solve a fixed point problem of the form π = G(π)
where:

G(π) := max
p≥0

{
p

[
1− Φ

(
1

σ
log

(
ŵ(p, π)

z

))]
−
[
1− Φ

(
1

σ
log

(
ŵ(p, π)

z

))]1/α
}
. (24)

We solve this fixed point problem numerically, guessing an initial π0, iterating on πk+1 =
G(πk) for k ≥ 0 and then iterating until |πk+1 − πk| < 10−6.

Steady state calibration targets. The six parameters (α, γ, ν, θ, σ, z) are chosen such
that the steady state of our model delivers the following six properties:

elasticity of labor supply = E[d log(ni)/d log(wi)] = 1.67
earnings dispersion = σSTY = 0.29

hours worked = E[ni] = 0.33
labor share = E[wini]/y = 0.67

aggregate markup = m = 1.10
x-sector markup = mx = 1.23

The following properties of the model are used repeatedly: individual labor supply is ni =
(wi/θ)

1/γ (from equation 13 in the main text). Since log idiosyncratic productivity log(wi)
is normal with mean log(z) and standard deviation σ, log labor supply is:

log(ni) ∼ N[(1/γ) log(z/θ), (σ/γ)2],

and so:
E[ni] = (z/θ)1/γ exp[0.5(σ/γ)2].

Similarly, log earnings is:

log(wini) ∼ N[((1 + γ)/γ) log(z)− (1/γ) log(θ), ((1 + γ)σ/γ)2],
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and so:
E[wini] = z(1+γ)/γθ−1/γ exp[0.5((1 + γ)σ/γ)2].

Given this, the average elasticity of labor supply is E[d log(ni)/d log(wi)] = 1/γ which equals
1.67 when γ = 0.60. The standard deviation of log earnings is [(1 + γ)/γ]σ which equals the
Storesletten, Telmer and Yaron (2004) estimate of σSTY = 0.29 when σ = (0.60/1.60)(0.29) =
0.11.

The remaining four parameters (α, ν, θ, z) have to be solved for simultaneously. From
our previous calculations, one condition is immediate:

E[ni] = (z/θ)1/0.60 exp[0.5(0.11/0.60)2] = 0.33. (25)

Labor’s share is E[wini]/y = 0.67 and since y = E[wini] + π, average earnings E[wini] =
(0.67/0.33)π. To calculate π the fixed point problem π = G(π) outlined above has to be
solved. The solution of the fixed point problem depends on all four parameters and to
acknowledge this write π(α, ν, θ, z). Using the formula for average earnings derived above
gives a second equation in the four unknowns:

E[wini] = z(1.60)/0.60θ−1/0.60 exp[0.5((1.60)(0.11)/0.60)2] =
0.67

0.33
π(α, ν, θ, z). (26)

The solution to the fixed point problem also gives us an optimal price p(α, ν, θ, z) and
associated percentage markup mx(α, ν, θ, z) for the x-sector. Our third equation in the four
unknowns is therefore:

mx(α, ν, θ, z) = 1.23. (27)

Let x denote the amount of the x-good sold by the firm at the price p and let ex := (px)/y
denote the expenditure share on the x-sector. Define the aggregate markup as the expendi-
ture share weighted average of the x-sector and c-sector markups, m := exmx+(1−ex), since
the c-sector percentage markup is zero by definition. Rearranging gives our fourth equation:

ex(α, ν, θ, z) =
m− 1

mx − 1
=

0.10

0.23
. (28)

In short, the four parameters (α, ν, θ, z) are found by solving the four equations (25)-(28)
simultaneously. This gives us α = 0.24, ν = 100, θ = 15 and z = 7.68.

E Sensitivity analysis

Diminishing returns parameter α. The top panel of table E.1 shows that halving or
doubling α leaves most of our main results intact. The most notable exception is that when α
is very low, real wages become counter-cyclical. This happens because firms’ marginal costs
are very volatile. Since those costs are pro-cyclical, it makes prices strongly pro-cyclical and
real wages counter-cyclical.
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Utility weight on x-good. The middle panel of table E.1 shows that halving or doubling
ν has almost no effect on either our model calibration targets or the model’s implications
for other macro aggregates. Our calibration procedure does not precisely pin down a value
for ν, but the model’s ability to reproduce business cycle facts does not depend crucially on
our benchmark ν value.

Level of aggregate productivity z̄. The bottom panel of table E.1 shows that our model
is much more sensitive to the level of the aggregate productivity. This is because of our non-
homothetic preferences. Calibration targets, such as hours and profit shares, change rapidly
as z̄ increases or decreases. The advantage of this sensitivity is that it means that the data
provide very precise information about what the level of z̄ should be. The disadvantage, of
course, it that the model’s ability to reproduce business cycle facts deteriorates when z̄ is
changed. A 10% rise in the level of aggregate productivity (from the benchmark z̄ = 7.7 to
8.5) leads the model to predict counter-cyclical real wages. But if the model is re-calibrated
by making offsetting changes in other parameters — e.g., if the weight θ on leisure is increased
so as to pull labor supply back down — the model regains its ability to explain business cycle
facts.

Results broken down by sector. While the paper reports aggregate statistics for the
economy as a whole, it is also useful to see what happens within each sector. Table E.2
reports markups, profit shares and expenditure shares for the x and c sectors separately for
our benchmark parameters.

F Decline in business cycle volatility.

Higher dispersion can lower business cycle volatility because high earnings dispersion reduces
aggregate demand elasticity. Therefore, shocks to labor productivity have less effect on who
buys what products. Since producers are producing in anticipation of changes in aggregate
demand, when aggregate demand becomes less volatile, GDP volatility falls as well. While
our model does not explain the bulk of the fall in business cycle volatility, as shown in table
F.1, it can — with the balanced growth correction — generate a modest decline.

In each decade, the model’s earnings dispersion by decade is chosen so that its log change
from the previous decade matches Heathcote, Storesletten and Violante (2006). When only
that change is made to the model, business cycle volatility increases because of an unintended
side-effect: When dispersion increases, the average productivity level does as well because
idiosyncratic productivity is lognormal. Higher productivity raises hours worked and shifts
the expenditure from c-good to consumption to x-good consumption. x-good consumption
is more volatile because of its linear utility.

With the balanced growth correction, results improve. Our model predicts essentially
flat business cycle volatility. To achieve a decrease in business cycle volatility, the dispersion
process needs to be smaller and less rapidly growing, like that for consumption dispersion.
Storesletten et al. (2004) report that food consumption has about 2/3rds the dispersion of
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earnings. We match the level of dispersion in the 70’s and its cyclical properties to their
estimate. For the long-run increase in consumption dispersion, we use the 5% per-decade
increase in non-durable consumption dispersion reported by Krueger and Perri (2005) for
1970-2000. The 10% rise in consumption dispersion from the 1970’s-90’s results in a 24%
drop in the standard deviation of log real GDP, but it does not reproduce the halving of
business cycle volatility in the data.

G Data and simulation details

Making annual dispersion quarterly. The quarterly persistence and standard deviation
of income are derived from the annual estimates of Storesletten et al. (2004) as follows: ρξ =
0.9521/4, the standard deviation to the persistent component is 0.125Q when productivity is
above average and is 0.211Q when productivity is below average while the standard deviation
of the transitory component is 0.255Q where the adjustment factor is Q := 1/(1 + ρξ + ρ2

ξ +
ρ3
ξ) = 0.2546.

Storesletten et al. (2004) also report consumption dispersion estimates, using food con-
sumption data from the PSID. The same procedure as for earnings was used to transform
annual to quarterly estimates. Since the persistence of consumption is slightly lower than
earnings, the annual to quarterly conversion factor is different. The quarterly AR1 coefficient
in persistent piece of individual earnings is ρξ = 0.8621/4 = 0.964. This delivers a factor for
converting annual to quarterly standard deviations Q = (1 + ρξ + ρ2

ξ + ρ3
ξ)
−1 = 0.264. This

conversion yields the parameters of the idiosyncratic earnings process. To convert these to
parameters of the idiosyncratic productivity process as fed into the model, multiply each
by γ/(1 + γ). Thus, σB = 0.172Qγ/(1 + γ) = 0.017, σR = 0.222Qγ/(1 + γ) = 0.02, and
σuQγ/(1 + γ) = 0.283Q = 0.028. The resulting steady state dispersion of consumption is
0.21, about 2/3rds of the steady state earnings dispersion (0.29) from the benchmark model.
None of the other parameters are changed.

Simulations. All simulations in this paper begin by sampling the exogenous state vari-
ables for a ‘burn-in’ of 1000 quarters. This eliminates any dependence on arbitrary initial
conditions. A cross-section of 2500 individuals is tracked for 200 quarters, corresponding to
the dimensions in Storesletten et al. (2004). Realizations of endogenous variables are then
computed. The moments discussed in the text are averages over the results from 100 runs
of the simulation (that is, averages over 200× 100 = 20000 observations).

Aggregate data. All data is quarterly 1947:1-2006:4 and seasonally adjusted. Real GDP is
from the Bureau of Economic Analysis (BEA). This is nominal GDP deflated deflated by the
BEA’s chain-type price index with a base year of 2000. Aggregate labor productivity and real
wages are measured as real output per hour and real compensation per hour in the non-farm
business sector, both from the Bureau of Labor Statistics (BLS) Current Employment Survey
(CES) program. Nominal output and compensation are deflated by the BLS’s business sector
implicit price deflator with a base year of 1992.
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H A model with endogenous risk-sharing

Because risk-sharing determines how much heterogeneity in demand for goods arises from
heterogeneity in earnings, an important extension of this model would be to allow households
to share risk. Perfect risk-sharing is both unrealistic and problematic: By ensuring that all
households have the same consumption, it would collapse heterogeneity entirely, rendering
our mechanism irrelevant. Rather, one would want to incorporate some limited risk-sharing.
A common approach is to allow households to trade non-state-contingent bonds. They can
then ensure their consumption stream by borrowing and lending. We first sketch a setup
of our model with borrowing and lending and then discuss some of the technical challenges
that make solving such a model another research project, in itself.

Model setup. Suppose that consumers can trade non-state-contingent bonds that are in
zero net supply. The individual state for a consumer is their current idiosyncratic productiv-
ity w and asset level a, call this s = (a, w). The aggregate state of the economy is the joint
distribution µ(s) over individual states (knowing µ implies a current aggregate productivity
level z and dispersion σ).

Consumer’s problem: Consumers take as given indivisible goods prices p, interest rate r,
and lump-sum profits π and chooses consumption c, labor supply n, indivisible goods xj for
j ∈ [0, 1] and next period’s asset position a′ to solve the Bellman equation:

v(s, µ, p, r, π) = max
c,n,x
{U(c, n, x) + βE[v(s′, µ′, p′, r′, π′)|s, µ]} (29)

subject to the budget constraint:

c+

∫ 1

0

pjxjdj + a′ ≤ w(s, µ)n+ (1 + r)a+ π

with c, a′ ≥ 0, n ∈ [0, 1], and xj ∈ {0, 1}. Let the endogenous law of motion for the aggregate
state be µ′ = Ψ(µ) and let the distribution of idiosyncratic productivities be w(s, µ). When
forming their conditional expectation in (29), consumers know the endogenous functions
that map the aggregate state µ into p, r, π, in equilibrium. Write the policy functions of an
individual consumer as c(s, µ, p, r, π), n(s, µ, p, r, π), x(s, µ, p, r, π) and a′ = g(s, µ, p, r, π).

Producer’s problem: Symmetric producers of x-goods take as given aggregate demand
x̄(µ, p, r, π) :=

∫
x(s, µ, p, r, π)dµ(s) and solve a static profit maximization problem:

π(µ) = max
p

{
px̄[µ, p, r(µ), π(µ)]− x̄[µ, p, r(µ), π(µ)]1/α

}
.

Let p(µ) denote the profit-maximizing optimal price.
Market clearing : Labor markets clear if

x̄[µ, p(µ), r(µ), π(µ)]1/α =

∫
{w(s, µ)n[s, µ, p(µ), r(µ), π(µ)]− c[s, µ, p(µ), r(µ), π(µ)]}dµ(s).
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Asset markets clear if ∫
g[s, µ, p(µ), r(µ), π(µ)]dµ(s) = 0.

A recursive equilibrium is a law of motion Ψ, individual functions v, c, x, n, g, pricing
functions p, r and profit function π such that (i) v, c, x, n, g solve the consumer’s problem,
(ii) p and π solve the producer’s problem, (iii) r clears the competitive asset market, and
(iv) Ψ is generated by g and the exogenous distribution of idiosyncratic productivities.

Solving the model. The key computational difficulty in solving a model of this kind is
the presence of the distribution µ, a high-dimensional object, as a state variable. Krusell
and Smith (1998) propose an approach to solving such models where the distribution µ is
summarized by its mean. Implementing their algorithm to solve our model is not straight-
forward.

An obvious issue is that the mean of the productivity distribution is no longer a nearly-
sufficient statistic for the distribution itself. All the novel effects of the model come from
the second moment of the productivity distribution. At the very least, the variance of the
distribution would be a second state variable. Although that would make the problem more
unwieldy, it is not the biggest hurdle.

The key technical difference is that in Krusell and Smith (1998), the interest rate r is a
known function of the mean of the capital stock distribution (from a competitive marginal
product condition). Because of their Cobb-Douglas technology, the interest rate does not
depend on any other properties of the distribution µ. These assumptions ensure that the
distribution µ is relevant only because households need to know the future distribution µ′

to forecast future interest rates. It is not needed to determine current period economic
conditions.

In our model with endogenous risk sharing, not only is the distribution of µ′ is relevant
for forecasting future interest rates (and profits), it is also directly needed to solve the x good
producer’s current problem and hence to determine current consumption of both goods and
labor supply. The interest rate r and lump-sum profit π functions must be simultaneously
determined with all the other equilibrium objects as part of a larger fixed point problem.
Thus, even the within-period optimization problem is a difficult fixed-point problem.

Finally, because the distribution itself plays a more central role in our problem than in
Krusell and Smith (1998), it is unlikely that their computational approach – summarizing
the distribution with a small number of moments – will deliver a close approximation to the
model’s solution.
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Figure

Figure C.1
Markup increasing in dispersion, random coefficients demand.
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The average markup (price/marginal cost) for x goods increases in earnings dispersion σ, in
a BLP-type random coefficients model where there is variable x-good demand in the sense
that consumers can choose not to consume any of the x goods and instead simply consume
more of the numeraire c good (so there may be expenditure switching).
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